A new roundabout at Dana Drive will also assist with the Interstate 5 improvements.

As traffic for motorists on the Pacific Highway, another cause of traffic congestion for motorists, the bridge at the Pacific Highway, will experience a major improvement. The new bridge will allow a smooth flow of traffic on I-5, reducing congestion and improving safety for motorists.

The pavement approach at the bridge is made up of 42 concrete blocks, each weighing 22,000 pounds. The weight of the concrete is over 60,000 pounds. The support structure is made of steel and reinforced concrete.

The bridge deck is a concrete slab design which includes drainage systems, sidewalks, and sidewalks adjacent to the bridge. The bridge deck is 215 feet long and 27 feet wide.

The finished bridge deck has an asphalt surface while the concrete pavement approach are highly grooved asphalt.

Concrete Resilience:

To reduce traffic noise and provide skid-resistant pavement approaches, a highly grooved asphalt surface will be used.

Concrete Crossing:

The bridge is located in an area with high traffic volumes. The bridge is designed to withstand the weight of large vehicles, including trucks and buses.

Crossing the bridge:

The bridge is designed to accommodate high traffic volumes. The bridge is designed to be safe and efficient for drivers.

Concrete Bridge:

The bridge is made of concrete, which is a durable and strong material. The bridge is designed to withstand the weight of vehicles and weather conditions.

Concrete to Concrete:

The bridge is designed to connect with the existing infrastructure, ensuring a smooth transition for drivers.

Concrete Bridge:

The bridge is designed to be a unique feature of the city's infrastructure. The bridge is a symbol of the city's commitment to future development and growth.

Concrete Bridge:

The bridge is designed to accommodate future growth and development. The bridge is designed to be a permanent feature of the city's infrastructure.

Concrete Bridge:

The bridge is designed to be a symbol of the city's commitment to sustainability and environmental stewardship. The bridge is designed to minimize its impact on the environment.
The crossing is on an area of reclaimed
excavated to the banks, and
the Main Rail Authority was able to cut
some bridge work could be done only when
traffic
reduced and to avoid peak hour traffic.

conchonl one hand, and to avoid peak hour traffic
by restoring river flow, yet shelter and
accommodate structure including

The bridge and approaches, designed

Engineering

Project: Examine landslip and throughout the
necessary for the project, and
recessed to provide some of the fill
resettling work on the FP Precinct was
removal material removed during
above the bridge approaches:

sands to align to the concave walls
and prevent layers of the underlying material;
prevention layers by the underlying material;
and stop the concentration of the
make extensive use of geotechnical

Environmental

The challenges of

Construction